RFQ Subcomponents

PXIE RFQ Fabrication Readiness Review LBNL - June 26, 2013

Steve Virostek - Engineering Division

Lawrence Berkeley National Laboratory

Topics

- RF sensing loops
- Adjustable bead pull tuners
- Tunable end blocks
- Support/assembly stand

RF Sensing Loops

- Detailed design completed by LBNL
- Uses an off-the-shelf Type N connector assembly
- Quote obtained from Ceramtec for full assemblies (~\$400 each)
- 48 each required for full RFQ

RF Sensing Loop Design

Installed RF Sensing Loop

RF Sensing Loop Drawing

- Used for single module and full RFQ bead pulls
- 80 each required for the 4-module RFQ
- Adjustment with external bolt
- Position determined by external scale and/or depth gauge
- RF seal only no vacuum
- Drawings complete prototype soon

Installed tuners

Section view of installed tuners

Adjustable Tuner Assembly Dwg

- Allows for end frequency adjustment during single/full module bead pulls
- Used with cutback blocks for inner modules
- Adjustment with four external bolts linked by sprockets/chain
- RF seal only no vacuum
- Drawings still to be done

Tunable End Blocks

6-Strut Support Structure

- Similar idea used on SNS RFQ
- Connected RFQ modules behave as a single rigid body
- Easy alignment and positioning
- Non-redundant support no thermal or mechanical loads imparted (kinematic)
- Inexpensive welded tubular steel
- Scheme being developed to allow assembly of modules in place on support

SNS RFQ Support w/Strut Bosses

SNS RFQ Support Drawing

Two SNS Modules in Place

Full SNS RFQ on Six Struts

Support Scheme

- For heavy hardware w/orthogonal struts, use 3 vertical, 2 lateral and 1 axial strut
- 3 vertical struts not coplanar and are spread along length to minimize bending
- Sets of lower load struts can be used for each module during assembly on stand
- Redundant struts can be added for extra support during shipping of assembled RFQ

6-Strut Support Scheme

Individual 6-Strut Assembly Scheme

